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Abstract—In this work, we study the freshness of a continually
updated piece of information as observed at a remote monitor by
analyzing the age of information metric. The age of information
has been studied for a variety of different queuing systems. In this
work, we introduce a packet deadline as a control mechanism and
study its impact on the average age of information for an M/M/1/2
queuing system. We analyze the system for a fixed deadline
and derive a mathematical expression for the average age. We
numerically evaluate the expression and show the relationship
of the age performance to that of the M/M/1/1 and M/M/1/2
systems. We show that the system with a deadline constraint
can outperform both the M/M/1/1 and M/M/1/2 without such a
deadline.

I. INTRODUCTION

We consider applications in which the goal is to continually
communicate the most updated state of some time-varying
process to a monitor. For example, a device regularly transmits
packets containing some status (e.g., sensor data, list of neigh-
boring nodes) to a network manager such that the observed
status at the network manager stays relatively fresh at all times.
Specifically, we look at a recently proposed metric known as
the status age or the age of information for a system in which
updates randomly pass through a queue. The age at the time of
observation is defined as the current (observation) time minus
the time at which the observed state was generated, and it
directly describes this objective of achieving timely updating
in a way that traditional metrics (e.g., delay, throughput) do
not [1]–[3].

Research on the age metric has focused on optimizing the
performance of systems that are modeled by different types
of queues, with various arrival/departure processes, number of
servers, and queue capacities. In particular, it was shown that
deterministic arrival and departure processes achieve a lower
average age than memoryless processes [1]. Also, the average
age decreases as the number of servers increases [4], [5]. In
addition, the age decreases as the queue capacity decreases or
when packets in the queue are replaced with newer packets [6].

In addition to different queue models, we would like to
uncover and understand other mechanisms for optimizing the
age for different queues. In this work, we study the age metric
when imposing a deadline on data packets that are waiting in
a queue, such that they are dropped from the system when the
deadline expires. Intuitively, a deadline that is too short would
have more packets expiring, leading to less frequent updates
at the monitor and a larger average age. However, a deadline
that is too long would not discard packets that grow very stale

in the queue, resulting in the inefficient use of server resources
on old packets, leading to an increase in the average age.

In this work, we derive the average age for an M/M/1/2
queue with a fixed deadline imposed on the packet in the
queue. We choose an M/M/1/2 queue since the small queue
achieves a relatively low average age. To reflect a common
system constraint in which the packet in service cannot be
dropped, we do not impose a deadline on the packet once
its transmission has commenced. The case where a packet in
service can be dropped may be of interest in certain systems
but is outside of the scope of this work.

The analysis of the average age is challenging even for
simple queues like the M/M/1/2. When we add the deadline
requirement, the analysis is further complicated since we must
account for packets that may exit the system without being
served. Furthermore, we conduct our analysis for a fixed
deadline, thus losing the memoryless property of the system
that typically simplifies the model. However, we are able to get
a mathematical expression for the average age, and we show
through numerical evaluation that the imposition of deadline
constraint can further optimize the system.

II. SYSTEM MODEL

Similar to [6], we study a system in which a source transmits
packets to a monitor through an M/M/1/2 queue, which has
a total capacity of 1 packet in the queue and one packet in
service. However, in this work, we consider that the packet
waiting in the queue is subject to a deadline, such that if it
waits in the queue for a time period longer than the deadline,
it is dropped from the system and never enters service. If
a packet enters the server before its deadline expires, it is
guaranteed to be served and is never dropped. The case where
packets in service can expire will be considered in future work.
A plot of the age of information is shown in Figure 1, where
transmissions occur at times t1, t2, . . ., and receptions at the
monitor occur at times t′1, t

′
2, . . ..

We refer to the time between packet generations as the
interarrival time Xi, i = 2, 3, . . ., which is equal to ti − ti−1.
The interarrival times are modeled as random; consequently,
the source does not have control over the exact times at
which it can transmit updates. In our model, the Xi’s are i.i.d.
exponential random variables with rate λ.

We call the time spent in the server by packet k the service
time Sk, k = 1, 2, . . ., which is equal to t′k − tk. The service
time Sk is modeled as exponential with rate µ, and all the Sk’s
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Fig. 1. Age of information for an M/M/1/2 system with deadlines.

are i.i.d. and independent of the Xi’s. The total time spent in
the system from arrival to service is given by Tk, k = 1, 2, . . .,
where Tk = Wk + Sk, with Wk being the time spent waiting
in the queue.

The age of information at time t is defined as ∆(t) =
t − u(t) [1], where u(t) is the timestamp of the most recent
information at the receiver as of time t. Given this definition,
we can see that the age increases linearly with t but is reset
to a smaller value with each packet received that contains
newer information, resulting in the sawtooth pattern shown
in Figure 1.

We also define the interdeparture time Yk as the time
between the instants of complete service for the k−1st packet
served and the kth packet served. This will be useful in the
computation of the average age.

III. AVERAGE AGE OF M/M/1/2 WITH A DEADLINE

To compute the average age for the M/M/1/2 system with
a deadline, we apply the graphical argument as in [1]. We
compute the area under the sawtooth curve using the sum
of the trapezoids Qk, k ≥ 0 in Figure 1, where each
trapezoid is associated with a unique packet that is successfully
transmitted. Packets that are blocked by a full system (e.g.,
packet 4) and packets that are dropped due to an expiring
deadline (e.g., packet 3) do not have trapezoids associated
with them. Following the approach in [7], we compute the
average area of trapezoid k by taking the area of the large
isosceles triangle (1/2)(Tk−1 + Yk)2 and subtracting the area
of the smaller isosceles triangle (1/2)T 2

k . The average age is
given by ∆ = λeE[Qk], where λe is the effective arrival rate
of packets that eventually complete service. Since Tk−1 and
Tk are equally distributed, the average age can be expressed
as

∆M/M/1/2D = λe(
1

2
E[Y 2

k ] + E[Tk−1Yk]). (1)

We derive the terms λe, E[Y 2
k ], and E[Tk−1Yk] in the follow-

ing sections.
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Fig. 2. Sample plot of time spent in each state.

A. Equilibrium Distribution of System State

Prior to deriving the terms in the average age expression, we
first need to find the equilibrium distribution of the number of
packets in the system, denoted as p0, p1, and p2. Because we
are dealing with a fixed deadline, we lose the memorylessness
of the system and cannot directly apply a Markovian analysis
at any arbitrary time instance. Therefore, we apply a time
averaging approach, making the assumption that time averages
and ensemble averages are equal. Let Vij be the time duration
of the jth visit to the state in which there are i packets in the
system. A sample plot of the time spent in each state is shown
in Figure 2. We also define α(t), β(t), and γ(t) as the number
of visits to state 0, 1, and 2, respectively. The percentage of
time spent in state 0, for example, as t goes to infinity, is given
by

p0 = lim
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After some algebra, we get the expression in Equation 2 at
the top of the page.
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where πi is the percentage of visits that are made to the state
i and E[Vi] is the average time spent in state i, we then have

p0 =
π0E[V0]

π0E[V0] + π1E[V1] + π2E[V2]

The probabilities p1 and p2 are derived in the same manner.
To derive the πi’s, we apply a Markov chain analysis, where
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Fig. 3. Markov chain for the percentage of visits to state i.

the process of visits to the different states is represented
by the Markov chain graph in Figure 3. Since the states
0 and 2 can only directly transition to 1, those transition
probabilities are equal to 1. Since the interarrival times and
service times are memoryless, the transition from 1 to 0 occurs
when a service time is less than an interarrival time, which has
probability µ

λ+µ . Likewise, the transition from 1 to 2 occurs
when an interarrival time is less than a service time, which has
probability λ

λ+µ . Using the balance equations, we can show
that the equilibrium distribution of visits is given by

π0 =
µ

2(λ+ µ)
, π1 =

1

2
, π2 =

λ

2(λ+ µ)
.

Lastly, we derive the average time spent in each state per
visit. For V0, the time spent is simply an interarrival time, so
E[V0] = 1/λ. For V1, the time spent is given by

E[V1] = Pr(X < S)E[X|X < S] + Pr(S < X)E[S|S < X]

=
λ

λ+ µ

1

λ+ µ
+

µ

λ+ µ

1

λ+ µ

=
1

λ+ µ
.

Finally, E[V2] is the average service time given that the service
time is less than D (if the residual service of the packet in the
server is longer than the deadline D, the packet in the queue
is dropped). This is given by

E[V2] =
1

µ
(1− e−µD).

We then have

p0 =
µ2

µ2 + λµ+ λ2(1− e−µD)
,

p1 =
λµ

µ2 + λµ+ λ2(1− e−µD)

p2 =
λ2(1− e−µD)

µ2 + λµ+ λ2(1− e−µD)

We note that the assumption of time averages equalling
ensemble averages would be strengthened with a formal proof,
but our simulations have indicated that this assumption holds.

B. Effective Arrival Rate λe
To derive the effective arrival rate λe, we compute the

probability that a packet is neither dropped due to deadline
nor blocked by a full system. This is simply the probability
that an arriving packet does not experience a residual service
time greater than D nor does it see a full system:

Pr(not blocked or dropped) = 1− (p1e
−µD + p2).

Thus the effective arrival rate is
λe = λ(1− (p1e

−µD + p2))

= λ
( µ2 + λµ(1− e−µD)

µ2 + λµ+ λ2(1− e−µD)

)
C. Second Moment of the Interdeparture Time E[Y 2

k ]

To compute the second moment of the interdeparture time,
we condition on whether packet k − 1 departing the server
leaves behind an empty system. We denote this event ψ and
its complement ψ̄. The event ψ occurs when a packet enters
state 1 and the (residual) service time is less than an interarrival
time. The event ψ̄ where packet k − 1 leaves behind a busy
system occurs when the system enters state 2 and the (residual)
service time of packet k − 1 is less than the deadline D. The
probability of ψ is thus given by

Pr(ψ) = Pr(system last entered state 1|packet served)

=
π1

µ
λ+µ

π1
µ

λ+µ + π2(1− e−µD)
=

µ

µ+ λ(1− e−µD)

and Pr(ψ̄) = 1− Pr(ψ).
The interdeparture time conditioned on ψ is the sum of

a residual interarrival time and a service time. Taking the
convolution of the two exponential random variables as in [7],
we get

E[Y 2
k |ψ] =

2(λ2 + λµ+ µ2)

λ2µ2
.

The interdeparture time conditioned on ψ̄ is simply a service
time, so E[Y 2

k |ψ̄] = 2/µ2 . Finally, to get E[Y 2
k ] we substitute

the conditional statistics in the following expression:

E[Y 2
k ] = E[Y 2

k |ψ] Pr(ψ) + E[Y 2
k |ψ̄] Pr(ψ̄)

=
2(µ(λ2 + λµ+ µ2) + λ3(1− e−µD))

λ2µ2(µ+ λ(1− e−µD))

D. E[Tk−1Yk]

Next we need to compute the quantity E[Tk−1Yk]. Again,
we condition on the events ψ and ψ̄. In each case, the system
time of packet k − 1 is conditionally independent of the
interdeparture time for packet k, since the event ψ or ψ̄
determines whether Yk is a residual interarrival time plus a
service time or just a service time, independent of the just
completed system time Tk−1. To compute E[Tk−1], we first
consider the waiting time for packet k − 1. The waiting time
of packet k − 1 is independent of the events ψ or ψ̄. Thus
we simply compute the expected waiting time for packets not
blocked or dropped (denoted as “tx”):

E[Wk−1|tx] = E[Wk−1|k − 1 enters busy system, tx]

· Pr(k − 1 enters busy system|tx)

= E[S′k−n|S′k−n < D]
Pr(k − 1 enters busy system, tx)

Pr(tx)

=
1

1− e−µD
( 1

µ
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µ
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1− (p2 + p1e−µD)

=
( 1

µ
−
(
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µ
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e−µD

) λµ

µ2 + λµ(1− e−µD)



Deriving the conditional expected service time given ψ
is complicated by the deadline requirement. A seemingly
straightforward derivation involves computing the service time
distribution given that no packet is accepted in the time
window of length D prior to the departure of the packet in
service. However, this may occur when 1) no packets arrive
in the time window, or 2) any packet that arrives within the
time window is blocked by a packet already in the queue,
which will itself expire just before the departure time. For case
2), we must also account for all events that ensure that there
is a packet in the queue to do the blocking, by considering
events where 1) no arrival occurs in the time window of
length D prior, or 2) any arrival within the time window is
itself blocked by some prior packet. We can see that this
accounting procedure continues, making more complicated
events to condition on.

Instead of attempting to account for all of these events, we
look at the state of the system as a function of time, just as
in Figure 2. At the start of a service, the system is in state 1
until either the packet is served and the system moves to state
0 or a packet arrives and the system moves to state 2. If the
system moves to state 2, the packet in service cannot leave
the system idle if it completes service in state 2. For a packet
to finish service while in state 1, the system must first drop
the waiting packet after a time D and move back to state 1,
and the cycle starts over again. We compute the conditional
expected service time given ψ and the number of packets l
dropped during the service time:

E[Sk−1|ψ] =

∞∑
l=0

E[Sk−1|ψ, l dropped] Pr(l dropped|ψ)

=

∞∑
l=0

∫ ∞
0

sf(s|ψ, l dropped)dsPr(l dropped|ψ)

=

∞∑
l=0

∫ ∞
0

s
Pr(ψ, l dropped|s)f(s)

Pr(ψ, l dropped)
ds

×Pr(ψ, l dropped)

Pr(ψ)
. (3)

The probability Pr(ψ, l dropped|s) is that of the event where
the end of a service time s falls after the sum of l interarrival
times (for the l accepted arrivals while in state 1) and l periods
of length D (for when the packets are dropped after in state
2), but before the arrival time of the (l+1)st accepted packet.
Let Zl be the sum of the l interarrival times. We then have

Pr(ψ, l dropped|s) = Pr(Zl + lD < s < Zl +Xl+1 + lD)

= Pr(s− lD − Zl < Xl+1)

=

∫ s−lD

0

e−λ(s−lD−z)fZl
(z)dz

for s > lD, zero otherwise. Using the PDF for the Erlang

distributed Zl in Equation 3, we get
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1
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∫ ∞
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∞∑
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For the conditional expected service time given ψ̄, we
can use the fact that the average service time is 1/µ to get
E[Sk−1|ψ̄] = (1/µ− E[Sk−1|ψ] Pr(ψ))/Pr(ψ̄).

As mentioned before, the system time for packet k − 1
and the interdeparture time for packet k are conditionally
independent given ψ and ψ̄. We now have all of the elements
needed to evaluate the following expression:

E[Tk−1Yk] = E[Tk−1Yk|ψ] Pr(ψ) + E[Tk−1Yk|ψ̄] Pr(ψ̄)

=
( 1

λ
+

1

µ

)
E[Tk−1|ψ] Pr(ψ)

+
1

µ
E[Tk−1|ψ̄] Pr(ψ̄)

=
( 1

λ
+

1

µ

)
(E[Wk−1|tx] + E[Sk−1|ψ]) Pr(ψ)

+
1

µ
(E[Wk−1|tx] + E[Sk−1|ψ̄]) Pr(ψ̄)

E. Average Age as λ→∞
We have now derived the terms necessary to compute the

average age. If we take the limit of the average age expression
as λ goes to infinity, we arrive at the following expression
(omitting the derivation for brevity):

lim
λ→∞

∆M/M/1/2D =
3

µ
−
(
D +

1

µ

)
e−µD.

Letting D → ∞ results in ∆M/M/1/2D = 3/µ, which is the
average age for the M/M/1/2 without deadline as λ goes to
infinity, and setting D = 0 results in ∆M/M/1/2D = 2/µ,
which is the average age for the M/M/1/1 without deadline as
λ goes to infinity [7]. If we take the derivative with respect to
D, we have

∂

∂D
lim
λ→∞

∆M/M/1/2D = −e−µD + µ
(
D − 1

µ

)
which is always greater than 0, since e−µD is at most 1 for
D ≥ 0. Therefore, for the case when λ approaches infinity,
the minimum average age occurs for D = 0.
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Fig. 4. (a) Average age vs. deadline for µ = 1, λ =0.5, 1, 1.5, and 2, (b) Average age vs. deadline for µ = 2, λ =1.75, 2, and 2.25. Minima are indicated
by ”4”, M/M/1/1 age indicated by ”◦”, M/M/1/2 age indicated by ”×”. (c) Optimum deadline vs. λ for µ = 1.

IV. NUMERICAL RESULTS

We numerically evaluate the average age ∆M/M/1/2D for
various service rates µ and arrival rates λ, and plot the age vs.
deadline in Figures 4(a) and 4(b) for µ = 1 and 2, respectively.
We also plot the age calculated from simulations of 10,000
samples averaged over 100 runs. The simulation agrees closely
with theory, supporting the assumption in Section III-A that
time averages and ensemble averages are equal. The minimum
for each case of λ is marked with a ”4”. In Figure 4(a), we
observe that for small values of λ, after initially decreasing,
the average age increases toward an asymptotic value as the
deadline increases. Since packets arrive infrequently, there is
less of a need to drop the packet in queue since it will not
be replaced frequently. For larger values of λ, the average age
starts to decrease with an increasing deadline, but then the age
quickly starts to increase and then asymptotically approaches
a limit. As λ continues to increase, the age decreases only
slightly before increasing more as deadline increases, since
a packet dropped from the queue is likely to be replaced
immediately, keeping packets fresh. These results show that
the deadline has a larger impact for higher λ. For Figure 4(b)
where µ = 2, the average age is lower than for µ = 1, and
the deadline has a more pronounced effect in lowering the
age. This suggests that a deadline will have a more noticeable
impact for systems that operate at a higher rate.

Note that when the deadline is set to 0, the system is
equivalent to an M/M/1/1 system since no packet can wait
in the queue. For a deadline equal to infinity, the system is
equivalent to an M/M/1/2 system. We have also plotted the
values of the age for these systems in Figures 4(a)-4(b) (”◦”
for M/M/1/1, ”×” for M/M/1/2). It is shown in [7] that the
M/M/1/1 has a higher average age for small values of ρ = λ/µ,
but a lower average age for large values of ρ = λ/µ. The
intuition is that for lower arrival rates, the M/M/1/1 will have
to wait longer after a packet departure for another packet to
send, thus increasing the age. On the other hand, for higher
arrival rates, the M/M/1/1 will typically be filled with a fresh
packet shortly after a departure whereas the M/M/1/2 will have
a packet in waiting that is typically older. Based on these
results, we observe that the imposition of a packet deadline
constraint is one way to transition between the M/M/1/1 and

M/M/1/2, at worst getting the best of both approaches, but in
actuality improving upon them in most cases.

Figure 4(c), shows that the optimum value of deadline de-
creases as lambda increases. This result is intuitively satisfying
because a higher arrival rate implies that packets are dropped
and replaced more frequently.

V. CONCLUSION AND FUTURE WORK

We have observed that the use of a packet deadline can add a
new dimension to optimizing the age of information, thus im-
proving the performance of real-time monitoring applications.
We have provided a mathematical analysis of the average age
expressed in terms of λ, µ, and D. Our numerical evaluation
shows that the age approaches the M/M/1/1 and M/M/1/2
ages as the deadline approaches 0 and ∞, respectively, but
there is also an optimum deadline that yields an even lower
age. We also observe that the optimum deadline decreases for
increasing arrival rate. Future directions for this work include
considering larger queue capacities, adaptive deadlines, and
packet management. We are particularly interested to see if a
deadline will have any added value when the queue is capable
of replacing packets with newer arriving packets.
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